A Positive Regulatory Loop between foxi3a and foxi3b Is Essential for Specification and Differentiation of Zebrafish Epidermal Ionocytes

نویسندگان

  • Chung-Der Hsiao
  • May-Su You
  • Ying-Jey Guh
  • Ming Ma
  • Yun-Jin Jiang
  • Pung-Pung Hwang
چکیده

BACKGROUND Epidermal ionocytes play essential roles in the transepithelial transportation of ions, water, and acid-base balance in fish embryos before their branchial counterparts are fully functional. However, the mechanism controlling epidermal ionocyte specification and differentiation remains unknown. METHODOLOGY/PRINCIPAL FINDINGS In zebrafish, we demonstrated that Delta-Notch-mediated lateral inhibition plays a vital role in singling out epidermal ionocyte progenitors from epidermal stem cells. The entire epidermal ionocyte domain of genetic mutants and morphants, which failed to transmit the DeltaC-Notch1a/Notch3 signal from sending cells (epidermal ionocytes) to receiving cells (epidermal stem cells), differentiates into epidermal ionocytes. The low Notch activity in epidermal ionocyte progenitors is permissive for activating winged helix/forkhead box transcription factors of foxi3a and foxi3b. Through gain- and loss-of-function assays, we show that the foxi3a-foxi3b regulatory loop functions as a master regulator to mediate a dual role of specifying epidermal ionocyte progenitors as well as of subsequently promoting differentiation of Na(+),K(+)-ATPase-rich cells and H(+)-ATPase-rich cells in a concentration-dependent manner. CONCLUSIONS/SIGNIFICANCE This study provides a framework to show the molecular mechanism controlling epidermal ionocyte specification and differentiation in a low vertebrate for the first time. We propose that the positive regulatory loop between foxi3a and foxi3b not only drives early ionocyte differentiation but also prevents the complete blockage of ionocyte differentiation when the master regulator of foxi3 function is unilaterally compromised.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zebrafish grainyhead-like1 is a common marker of different non-keratinocyte epidermal cell lineages, which segregate from each other in a Foxi3-dependent manner.

Grainyhead/CP2 transcription factor family members are widely conserved among the animal kingdom and have been implicated in different developmental processes. Thus far, nothing has been known about their roles in zebrafish. Here we identify seven zebrafish grainyhead-like (grhl) / cp2 genes, with focus on grhl1, which is expressed in the periderm and in epidermal ionocyte progenitors, but down...

متن کامل

Specific expression and regulation of glucose transporters in zebrafish ionocytes.

Glucose, a carbohydrate metabolite, plays a major role in the energy supply for fish iono- and osmoregulation, and the way that glucose is transported in ionocytes is a critical process related to the functional operations of ionocytes. Eighteen members of glucose transporters (GLUTs, SLC2A) were cloned and identified from zebrafish. Previously, Na(+),K(+)-ATPase-rich (NaR), Na(+)-Cl(-) cotrans...

متن کامل

Development of zebrafish epidermis.

Zebrafish epidermal ionocytes are analogous to mammalian kidney cells in terms of expression and function of ion transporters. In this review, we summarize current findings about the development of the zebrafish epidermis and demonstrate how the zebrafish regulate stress acclimation through induction of cell differentiation. In addition, cellular homologies between zebrafish epidermal ionocytes...

متن کامل

Visualization in zebrafish larvae of Na(+) uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a.

Uptake of Na(+) from the environment is an indispensable strategy for the survival of freshwater fish, as they easily lose Na(+) from the plasma to a diluted environment. Nevertheless, the location of and molecules involved in Na(+) uptake remain poorly understood. In this study, we utilized Sodium Green, a Na(+)-dependent fluorescent reagent, to provide direct evidence that Na(+) absorption ta...

متن کامل

Stanniocalcin-1 Controls Ion Regulation Functions of Ion-transporting Epithelium Other than Calcium Balance

Stanniocalcin-1 (STC-1) was first identified to involve in Ca(2+) homeostasis in teleosts, and was thought to act as a hypocalcemic hormone in vertebrate. Recent studies suggested that STC-1 exhibits broad effects on ion balance, not confines to Ca(2+), but the mechanism of this regulation process remains largely unknown. Here, we used zebrafish embryos as an alternative in vivo model to invest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007